--- title: "rsimsum and the tidyverse" author: "Alessandro Gasparini" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{rsimsum and the tidyverse} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} options(width = 150) knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.align = "center", fig.height = 6, fig.width = 6, out.width = "75%" ) ``` `rsimsum` plays nice with the tidyverse. ```{r packages} library(rsimsum) library(dplyr) library(ggplot2) library(knitr) ``` For instance, it is possible to chain functions using the piping operator `%>%` to obtain tables and plots with a single call: ```{r table} data("MIsim", package = "rsimsum") MIsim %>% simsum(estvarname = "b", se = "se", methodvar = "method", true = 0.5) %>% summary() %>% tidy() %>% kable() ``` ```{r plot} MIsim %>% simsum(estvarname = "b", se = "se", methodvar = "method", true = 0.5) %>% summary() %>% tidy(stats = "bias") %>% ggplot(aes(x = method, y = est, ymin = lower, ymax = upper)) + geom_hline(yintercept = 0, color = "red", lty = "dashed") + geom_point() + geom_errorbar(width = 1 / 3) + theme_bw() + labs(x = "Method", y = "Bias") ```